Siemens Demand Flow®
A unique and proven energy and operational cost saving application for water-cooled, central chilled water systems
• Crucial to guest comfort, business success

• Chiller plant is a major capital asset, reliability and extended plant life are key

• Cooling energy can be as much as 20-25% of a hotel’s electricity consumption

• Plants run 24 x 7 throughout cooling season, with widely variable loads

• Year-round operation is common in hotels with CHW fan coils in guest rooms, light loads mean poor efficiency. Plate and frames often don’t work properly.

• High electricity costs, inefficient plant operations = pressure to reduce operating expenses from ownership
Overview: Why Chiller Plant Optimization?

Source: "All Variable Speed Chiller Plants", ASHRAE Journal, September 2001
Overview: Common CHW System Characteristics

<table>
<thead>
<tr>
<th>Typical Characteristics</th>
<th>Inherent Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chillers not operating at design temperature splits</td>
<td>Plagued with "Low Delta-T Syndrome"</td>
</tr>
<tr>
<td>Excessive bypass of chilled water flow</td>
<td>Excessive pumping / chiller energy and shaft-miles</td>
</tr>
<tr>
<td>Constant volume pumping (both CHW and CW)</td>
<td>Excessive pumping / chiller energy and shaft-miles</td>
</tr>
<tr>
<td>Efficiency is often sacrificed to maintain comfort</td>
<td>Higher utility costs</td>
</tr>
<tr>
<td>Total plant energy performance not fully measured</td>
<td>Not measured can’t be controlled</td>
</tr>
<tr>
<td>Operate at design intent conditions only 5% of the time (per ARI standards)</td>
<td>Inefficient and costly plant operations 95% of the time (per ARI standards)</td>
</tr>
<tr>
<td>Continuous full speed operation of some plant equipment</td>
<td>Decreased equipment life</td>
</tr>
</tbody>
</table>
Overview:
What is Chilled Water System Optimization?

Fundamental energy consuming sub-systems that influence deliverable capacity:

1. Chillers
2. Chilled Water Pumping
3. Condenser Water Pumping
4. Cooling Tower Fans
5. Air Side (Chilled Water Coils)

These 5 subsystems are interdependent
- Energy and deliverable capacity are interdependent
- Often "conservation methods" reduce deliverable capacity
- Often energy conservation methods result in a "transfer of energy" among the 5 subsystems

Siemens understands these technical relationships, delivering a "holistic" approach to CPO
Selection of a pump curve that intersects the Design Point

Constant Speed Pumping

PSIG

0 200 400 600 800 1000 1200 1400 1600 1800 2000

GPM

Design Point

Market Factors
Overview of CPO
Overview Demand Flow
Financial Overview
Partnering with Siemens
Case Studies
Process
Next Steps
A typical control strategy is to control to a constant differential pressure in the loop.

With the application of a variable speed drive, the pump curve shifts as motor speed decreases.
Demand Flow Control Strategy: Variable Pressure Curve Logic (VPCL)

Calculated Dynamic Variable System Pressure Curve

Demand Flow continuously resets system differential pressure along calculated curve.

Demand Flow Patent-Pending Variable Pressure Curve Logic (VPCL)
Refrigeration Cycle and Mollier Curve

- Pressure
- Enthalpy

Sub-cooled Region

Mixed or "Wet" Region

Superheated Region

- Enthalpy H1: saturated liquid (condenser)
- Enthalpy H2: saturated vapor (evaporator)
- Throttling
- Heat of Compression
- Net Refrigeration Effect (H2-H1)
- Lift

 Restricted © Siemens Industry, Inc. 2013 All rights reserved.
Page 10
Impact on Lift and Refrigeration Effect

- Sub-cooled Region
- Mixed or "Wet" Region
- Superheated Region

Net Refrigeration Effect (H2-H1)

Lift

pressure

enthalpy

Market Factors
Overview of CPO
Overview Demand Flow
Financial Overview
Partnering with Siemens
Case Studies
Next Steps
Impact on Chiller Compressor Energy

Compressor Energy = Mass Flow of Refrigerant \times \text{Differential Pressure or ‘Lift’}

Mass Flow of Refrigerant = \frac{200}{\text{Refrigerant Effect} \times \text{Effective Tonnage}}

Compressor Energy = \frac{200}{\text{Refrigerant Effect}} \times \text{Effective Tonnage} \times ‘Lift’

Demand Flow improves chiller efficiency by increasing the Refrigeration Effect, and by reducing Lift while preventing surging.

Demand Flow manages Lift by controlling condenser water temperatures and condenser water flow through the chillers.
Simplified Chiller Sequencing

Traditional methods of optimization
- Reset chilled water temperature up
- Chillers sequenced via a database of load profiles
- They all try to find a “sweet spot”
- Kw/ton based on historical data not necessarily in real-time

Demand Flow Sequencing
- Demand Flow widens “sweet spot”
- Wider “sweet spot” = increased efficiency through the entire tonnage range
- Increased deliverable tonnage
- Less start/stop = less wear and tear
- Chillers sequenced lead / lag based on run-time
- Most efficient system kw/ton in real-time
What’s Different

- VFDs installed on all CHW and CW Pumps and CT Fans
- Water Flow Varies thru Chiller Evaporator and Condenser
- Virtually no CHW/CW bypass
- Optimize Pressure and Temperature set-points based on system dynamics
- VFDs are **not** required on the Chillers (Will work with or without VFDs on chillers)
- Turn-key Installation and Commissioning
- Pre and Post Measurement and Verification

System Effects

- Solves Low Delta T Syndrome
- Increases system deliverable tonnage (where low Delta-T is present)
- Manages chiller "Lift", effectively eliminates refrigerant flow issues at low load conditions
- Stable Chiller Refrigerant loop performance at virtually all tonnage loads
Demand Flow Enables Water-Side Economizer

Demand Flow & Free Cooling

- Reliable switch-over to Water-Side Economizer, key consideration for hotels with year round cooling loads. 4,500 to 5,000 hours of “free cooling” operation available.

- Variable CW flow and reductions in CHW flow improve W-S E efficiency.

- Enables simultaneous operation of plate and frame and chiller in Demand Flow mode w/o the need for a variable speed chiller

(Source: The Green Grid)
Primary Benefits of Demand Flow

- **Reduced energy consumption and greater performance**
 - Typically 15-50% total Chilled Water System energy savings
 - 2-4 year simple payback
 - Requires less energy to deliver potentially colder chilled water temperatures
 - Improves System *Deliverable* Cooling Capacity

- **Extended equipment Life**
 - Increased *Deliverable* tonnage means more redundancy
 - Reduced run-time = less maintenance
 - Less wear and tear on system components

- **Improved indoor environmental quality**
 - Occupant comfort is not sacrifices to provide energy savings
 - More effective humidity control

- **Simplified system operation**
 - Sequencing chillers is typically Lead/Lag based on run-hours (can be customized)
 - More intuitive sequencing of equipment
 - Improved system reliability and control

Demand Flow results in significant energy savings and improved comfort
Statistical Energy Modeling

Siemens utilizes 12 months of customer’s historical chiller logs to develop base-line energy consumption vs. optimized energy consumption.

Establishing an accurate baseline is **critical** to determining the savings accurately, and to securing incentive support.
Financial Analysis: What Can You Expect

Example: Avg 1,800 Ton Plant

<table>
<thead>
<tr>
<th>Year</th>
<th>DF Savings ($)</th>
<th>Project Cost ($)</th>
<th>Incentives Received ($)</th>
<th>MBCx & Service ($)</th>
<th>Annual Cash Flow ($)</th>
<th>Cumulative Cash Flow ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-300,000</td>
</tr>
<tr>
<td>1</td>
<td>+100,000</td>
<td>-300,000</td>
<td>0</td>
<td>-15,000</td>
<td>+85,000</td>
<td>-215,000</td>
</tr>
<tr>
<td>2</td>
<td>+102,000</td>
<td></td>
<td></td>
<td>-15,300</td>
<td>+86,700</td>
<td>-128,300</td>
</tr>
<tr>
<td>3</td>
<td>+104,040</td>
<td></td>
<td></td>
<td>-15,606</td>
<td>+88,434</td>
<td>-39,866</td>
</tr>
<tr>
<td>4</td>
<td>+106,121</td>
<td></td>
<td></td>
<td>-15,918</td>
<td>+90,203</td>
<td>50,337</td>
</tr>
<tr>
<td>5</td>
<td>108,243</td>
<td></td>
<td>16,236</td>
<td>+92,007</td>
<td></td>
<td>142,343</td>
</tr>
<tr>
<td>6</td>
<td>110,408</td>
<td></td>
<td>16,561</td>
<td>+93,847</td>
<td></td>
<td>236,190</td>
</tr>
<tr>
<td>7</td>
<td>112,616</td>
<td></td>
<td>16,892</td>
<td>+95,638</td>
<td></td>
<td>331,914</td>
</tr>
<tr>
<td>8</td>
<td>114,869</td>
<td></td>
<td>17,230</td>
<td>+97,638</td>
<td></td>
<td>429,552</td>
</tr>
<tr>
<td>9</td>
<td>117,166</td>
<td></td>
<td>17,575</td>
<td>+99,591</td>
<td></td>
<td>529,143</td>
</tr>
<tr>
<td>10</td>
<td>119,509</td>
<td></td>
<td>17,926</td>
<td>+101,583</td>
<td></td>
<td>630,726</td>
</tr>
</tbody>
</table>

Break-even point

Total Cost: $300,000
Total Benefit: $630,726

IRR: 27.2%
ROI: 210.2%

3.4 Year Payback
Financial Analysis: What Can You Expect

Example: Typical 1,800 Ton Chiller Plant

<table>
<thead>
<tr>
<th>Year</th>
<th>DF Savings ($)</th>
<th>Project Cost ($)</th>
<th>Incentives Received ($)</th>
<th>MBCx & "Service": $15k/yr</th>
<th>Annual Cash Flow ($)</th>
<th>Cumulative Cash Flow ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-300,000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+100,000</td>
<td>-300,000</td>
<td>100,000</td>
<td>-15,000</td>
<td>+85,000</td>
<td>-215,000</td>
</tr>
<tr>
<td>2</td>
<td>+102,000</td>
<td></td>
<td></td>
<td>-15,300</td>
<td>+86,700</td>
<td>-128,300</td>
</tr>
<tr>
<td>3</td>
<td>+104,040</td>
<td></td>
<td></td>
<td>-15,606</td>
<td>+88,434</td>
<td>-89,886</td>
</tr>
<tr>
<td>4</td>
<td>+106,121</td>
<td>-</td>
<td></td>
<td>-15,918</td>
<td>+90,203</td>
<td>150,337</td>
</tr>
<tr>
<td>5</td>
<td>108,243</td>
<td></td>
<td></td>
<td>16,236</td>
<td>+92,007</td>
<td>242,348</td>
</tr>
<tr>
<td>6</td>
<td>110,408</td>
<td></td>
<td></td>
<td>16,561</td>
<td>+93,847</td>
<td>336,190</td>
</tr>
<tr>
<td>7</td>
<td>112,616</td>
<td></td>
<td></td>
<td>16,892</td>
<td>+95,638</td>
<td>431,918</td>
</tr>
<tr>
<td>8</td>
<td>114,869</td>
<td></td>
<td></td>
<td>17,230</td>
<td>+97,638</td>
<td>529,552</td>
</tr>
<tr>
<td>9</td>
<td>117,166</td>
<td></td>
<td></td>
<td>17,575</td>
<td>+99,591</td>
<td>629,145</td>
</tr>
<tr>
<td>10</td>
<td>119,509</td>
<td></td>
<td></td>
<td>17,926</td>
<td>+101,583</td>
<td>730,728</td>
</tr>
</tbody>
</table>

Total Cost: $300,000

Total Benefit: $730,726

IRR: 37.5%

ROI: 243.5%

2.3 Year Payback
Utility Rebates to Improve ROI (partial list)

<table>
<thead>
<tr>
<th>Utility</th>
<th>Service Territory</th>
<th>Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke Energy</td>
<td>• Indiana Kentucky
• North Carolina</td>
<td>• IBM 401 Data Center
• P&G Cincinnati</td>
</tr>
<tr>
<td>Eversource</td>
<td>• Eastern Massachusetts</td>
<td>• Novartis, Gillette, Spaulding Rehab</td>
</tr>
<tr>
<td>National Grid</td>
<td>• Massachusetts
• New Hampshire</td>
<td>• Twin River</td>
</tr>
<tr>
<td>UI</td>
<td>• New Haven and Bridgeport, CT</td>
<td>• Bluestone</td>
</tr>
<tr>
<td>NYSERDA</td>
<td>• New York State</td>
<td>• IBM Fishkill</td>
</tr>
<tr>
<td>ConEdison</td>
<td>• New York City
• Westchester County</td>
<td>• Financial Customer</td>
</tr>
<tr>
<td>XcelEnergy</td>
<td>• Colorado
• Kansas
• Michigan
• Minnesota
• New Mexico</td>
<td>• USPS Data Center
• Ameriprise Financial
• Methodist Hospital</td>
</tr>
<tr>
<td>PSEG</td>
<td>• New Jersey</td>
<td>• Data Center Customer</td>
</tr>
</tbody>
</table>
EXPERTISE – DF Center of Excellence Team – Branch Office Support

Trained Professionals > 650
Center of Excellences = 15
Demand Flow® Installations in the Hospitality Industry

Hotels
• Hyatt Center, Chicago IL
• Hyatt Regency, New Orleans LA
• Imperial Palace, Biloxi MS
• Four Seasons, Grand Hyatt, Hyatt Regency, Atlanta GA
• Dolphin Hotel, Swan Hotel, Orlando FL
• Sunset Marquis Hotel, Los Angeles CA
• Marriott Grand Chateau, Las Vegas NV

Casinos
• The Cosmopolitan, The Venetian, MGM Grand, Las Vegas NV
• L’Auberge Casino, Lake Charles LA
• Twin River Casino, Lincoln RI

Stadiums and Arenas
• TD Garden, Boston MA
• MetLife Stadium, Rutherford NJ
• BB&T Stadium, Miami FL
• Superdome, New Orleans LA
Demand Flow® at the Mandarin Oriental

Baseline and Projected Results

- 2,281,757 average ton-hours annual plant chilled water production
- Estimated baseline consumption of 2,141,200 kWh/yr
- Baseline plant efficiency of 0.938 kW/ton
- Projected kWh with Demand Flow of 1,883,095
- Projected plant efficiency of 0.791 kW/ton (conservative projection)
- Projected kWh reduction of 337,205 kWh annually
- Projected Energy Cost Savings of $49,232 annually
- Avoided CO2 emissions of 512,619 lbs annually

Case Details

- Relatively modern, 1500 ton plant with two Trane VSD 750 ton centrifugal chillers
- Roughly 1000 ton peak summer load, 200 ton winter baseload
- Variable primary chilled water pumping,
- Plate and Frame HX for Water Side Economizer
- Constant flow condenser water pumping
- Year-round operation to provide chilled water for guest room fan-coils
Global Installations:
5 completed
5 in development

Coming soon:
- Melbourne, Australia
- Sydney, Australia
- Singapore,
- Hong Kong, China
- Macau, China
Siemens Building Performance and Sustainability

Contact Information:

Andrew Coffin, CEM
Building Automation Energy Specialist
Siemens Industry, Inc.
Building Technologies Division
85 John Road, Suite 1
Canton, MA 02021

andrew.coffin@siemens.com
Mobile 781-375-7421
Fax 781-575-9590
Questions?