COMPONENTS AND TIGHT/LOOSE VENEER

COMPONENTS
A veneer face is made up of one or more parallel trimmed slices of raw veneer. These are called components. As veneer is sliced from a log, each slice is rough edged and often contains sapwood of a lighter color than the desired heartwood (Fig 1). The veneer slices are then cut to the desired length using a clipper (Fig 2 & Fig 3).

Next the undesirable sapwood is removed using a guillotine (Fig 4 & Fig 5).

The result is a set of veneer slices, or components (Fig 6), that are precisely parallel and ready to assemble, edge-to-edge, into a face (Fig 7) that meets the customer’s specification.
TIGHT SIDE – LOOSE SIDE
Perhaps you have heard the terms “barber pole” effect or “tight and loose” side of veneer. These are concepts that are better understood when you can envision the veneer slicing operation from a microscopic view. Where the flat edge of the knife penetrates the log, the wood fibers are neatly severed. This is called the TIGHT side of the veneer. The side of the veneer that faces the beveled edge of the knife develops microscopic fractures as the bevel separates and pushes the slice away from the log, and this is called the LOOSE side of the veneer. Every slice of veneer has a TIGHT and LOOSE side.

Why is this important? The TIGHT and LOOSE side of veneer reflects light differently. The TIGHT side has the wood fibers more cleanly severed, resulting in more reflectivity of light. The LOOSE side tends to be less reflective due to the microscopic fractures. This also affects the degree to which the veneer absorbs stain. The LOOSE side tends to be more porous and absorbs stain more readily than the TIGHT side.

When components are “book” matched to make a face, every other component is flipped so that the face is constructed of alternating TIGHT and LOOSE sides. These components will have alternating degrees of reflectivity. This will lead to a light/dark/light/dark effect known as “Barber Pole”. In some species it can be quite pronounced, and in others almost imperceptible. Unless this effect is desired, prudent veneer selection and well known finishing techniques (surface prep, sealer, etc.) will significantly reduce or nullify this effect and yield a pleasing look that promotes the natural character of the specie.

Conversely, when components are “slip” matched, the TIGHT side of the veneer is most often up. This minimizes any alternating reflectivity of the veneer, and significantly reduces any “Barber Pole” effect.

Prudent veneer selection, understanding the matching of components and proper surface preparation will yield the desired look for your projects.

We’ll apply what we learned about TIGHT/LOOSE and explore more veneer matching techniques in our next issue.