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SUMMARY 

We discuss the problem of describing multiple group comparisons in survival analysis using the Cox model, 
and in matched case-control studies. The standard method of comparing the risk in each group with a 
baseline group is unsatisfactory because the standard errors and confidence limits relate to correlated 
parameters, all dependent on precision within the baseline group. We describe the construction of standard 
errors for the parameters of all groups, without the need to select a baseline group. These standard errors can 
be regarded as relating to roughly independent parameters, so that groups can be compared efficiently 
without knowledge of the covariances. The method should assist in graphical presentation of relative risks, 
and in the combination of results from published studies. Two examples are presented. 

INTRODUCTION 

Many regression models include the effects of a factor which divides individuals into several 
categories, or levels. If there are s categories 0, 1, . . . , s - 1 it is usual to fit s - 1 parameters 
fll , . . . , B s - ' ,  with the zero group forming a baseline or comparison category. This standard 
parametrization, used for example in the package GLIM,' has two disadvantages. All the 
estimates of the regression parameters will necessarily be correlated by virtue of their dependence 
on the baseline category, and if the baseline category is small, they will have large standard errors. 

In many linear models, this problem can be avoided by dispensing with a parameter for the 
overall mean and fitting s parameters a,, , . . . , a, - relating to category membership. This 
'natural' parametrization of the effect of the factor will result in estimates whose only correlations 
are those induced by other parameters in the model. This manoeuvre is carried out easily in 
GLIM, and would apply, for example, to logistic regression analysis of case-control studies with 
large strata.* 

This multiple comparison problem also occurs in proportional hazards regression' and in the 
analysis of matched case-control studies using logistic regression.2 Here, however, the problem is 
more fundamental, because analysis is based on a conditional likelihood which contains no 
analogue of the overall mean. Some additional manoeuvring, described here, is required to 
produce uncorrelated parameter estimates. 

METHODS 
Survival analysis 

We consider first a typical survival analysis problem, in which survival is to be related to a factor 
with several levels, such as stage of disease. Suppose initially that no additional covariates, other 
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than the factor of interest, are considered. The Cox proportional hazards model3 assumes that the 
risk of death at time t for individuals in categoryj, A j ( t ) ,  is of the form: 

Suppose there are K risk sets, one for each time at which a death occurs. Let njk be the number of 
individuals in category j and risk set k, and let M j  denote the total number of deaths occurring 
in individuals in category j .  The standard method of analysis is to maximize the partial 
log-likelihood: 

s-  1 K 

1% L = 1 MjPj - c 
j = O  k =  1 

This is exact if one death occurs in each risk set; in the case of ties, it is an approximation to the 
exact likelihood suggested by Peto4 (in which case the last term in (2) is repeated for each death). 
Only s - 1 of the P j ’ s  can be estimated by maximizing this likelihood, because the addition of an 
arbitrary constant to each Pi will only add a constant to the log-likelihood. The usual practice is 
to set Po to zero, so that exp (Pj) is the relative risk for categoryj relative to the zero (or baseline) 
category. The information matrix for P1, . . . , 8,- is then: 

a 2  log L = - $  n j k  expflj (njkexpPj)2 
aPj2 k = 1 11 nlk exp 81 + kcl ( 11 nlk exp PI)’ 

and 

In general it is not possible to invert this matrix algebraically and obtain an explicit expression for 
the variancexovariance matrix of the Pj’s. However, there is one important case when the 
variancexovariance matrix can be written down explicitly. This occurs when the categories are 
represented in equal proportions in every risk set, so that the njk are of the form: 

n j k  = N j x k  (3) 

where Nj = c k n j k  and Xk, k = 1, . . . , K are constants. 
In thi‘s case the information matrix takes the simple form: 

C + DDT 
where 

K 
C = -diag(b,, b,, . . . , b,- 1 )  

Cl bl 

and 

b, = Njexp(Bj), j = 1 , . . . , s  - 1 .  
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The variancexovariance matrix for the pj's is then: 
r 

The estimates f i j  are of course correlated, but the covariances are all equal to (1, b , ) / ( b , K ) ,  and 
depends only on the sample size of the 'zero' category. These variances and covariances are 
precisely those which would be obtained if there were independent parameters uo , . . . , a,- 
associated with each category, such that 

pj  = aj - a. 
with the variance of d j  given by: 

We interpret the parameters uo , . . . , a,- as logarithms of the absolute risks associated with 
each category, so that subtraction of a. gives logarithms of the relative risks pj .  This representa- 
tion of the results has a major advantage. The estimates d j ,  together with their standard errors, 
provide a complete description of the results, whereas the standard representation is inadequate 
without the complete covariance matrix of the f i i s .  The only problem is that, although we know 
what the standard errors of the Bj 's  ought to be, the parameters themselves cannot be estimated 
from the Cox likelihood, which only allows s - 1 relative risks to be estimated. This problem is 
dealt with in the next section. 

Why are s independent parameters obtained in this case? The Cox model (1) allows the 
absolute risk to vary in an arbitrary manner between different risk sets. The partial likelihood (2) 
is equivalent to a Poisson likelihood in which a separate risk parameter is estimated for each risk 
set. In general the categories will not be equally represented in all risk sets, and the parameter 
estimates for the categories are therefore partially confounded with the parameter estimates for 
the risk sets, and in turn correlated with each other. However, in the special case specified by 
condition (3), group membership is orthogonal to the confounding effect of risk set and no 
correlations are induced. This condition will often hold approximately in survival analysis, as in 
the example below, provided that the pattern of censoring is similar in each group. The 
proportions at risk in different groups will change over time due to differences in event rates, but 
the effect will be large only if (a) the p j ' s  differ substantially, and (b) the death rates are sufficiently 
large to eliminate a substantial proportion of individuals. 

Two alternative definitions of the problem 

(i) An heuristic formulation 

The general situation, in which completely independent parameter estimates cannot be derived, 
can be approached in two quite different ways. The first is quite general and applies to any 
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analysis of data in s categories which yields s - 1 (approximately normal) parameter estimates bj 
(j = 1, . . . , s - 1) and the corresponding covariance matrix [ B i j ] ,  including normal or logistic 
regression analysis and matched case control analysis, as well as Cox regression. These s - 1 
estimates sj from a conventional analysis are then assumed to have been derived from s 
parameter estimates k j ( j  = 0, . . . , s - 1) with covariance matrix [ A i j ] ,  such that 

bj = 61, - 61,. 

This implies that the covariance matrices A and B must satisfy 
(4) 

Bij  = Aij  - A i ,  - AOj  + A,,,  i, j = 1, . . . , s - 1. ( 5 )  

The problem may thus be restated as follows. We wish to ‘invent’ an extra parameter estimate 61, 
for the baseline group (hence defining d j  ( j  = 1, . . . , s - 1) from equation (4)), and a correspond- 
ing matrix [ A i j ]  which satisfies equation (5).  Without loss of generality, we can assume that 61, 
happens to equal zero. The objective is thus to select a variance-covariance matrix A which 
satisfies equation ( 5 )  and is ‘almost diagonal’ in some sense. For the procedure to be well-defined, 
we also require that the same matrix A should be generated regardless of which baseline group 
was chosen. 

There is then one matrix A that appears particularly ‘natural’, as it satisfies (and is uniquely 
defined by) three attractive and equivalent criteria: 

1. The sum of covariances in each row is zero. 
2. The sum of squares of the covariances is minimized. 
3. A,,, the variance of the baseline group parameter estimate do ,  is the average of the 

covariances Bij  (i # j ) .  

This matrix A can be calculated from B as follows: 

A i j  = Bij  + AOi + A O j  - A,,  i, j = 1, . . . , s - 1. 

If there are other covariates, then further constraints are required to completely specify the off 
diagonal terms of the covariance matrix. A reasonable choice is that which again minimizes the 
sum of squares of the covariances. The remaining terms of A are then given by: 

1 s - 1  

s 1 = 1  
A . . = B . . - -  E l l l j  i = l ,  . . . ,  s - 1 ,  j = s  , . . . ,  t + s - 1  

1J I J  

A , .  = B . .  i , j = s ,  . . . ,  t + s -  1 
I J  I J  

where the parameters s, . . . , t + s - 1 refer to the additional covariates. The calculation of 
covariances between parameter estimates is usually of little practical importance, as they are so 
rarely published. The approach described above is probably not the most appropriate way to deal 
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with covariances between estimates for two categorical variables which are strongly inter-related, 
such as age at first birth and number of children. This question requires further consideration. 

The standard variance-covariance matrix B can be routinely output by standard conditional 
logistic regression and Cox regression packages such as PECAN,’ and this method is therefore 
trivial to implement. In spite of its simplicity, however, this formulation has the unattractive 
property of being defined in terms of the estimates and their covariances rather than any explicit 
model in which the parameters are well-defined. The formulation outlined in the following section 
is in this sense more satisfactory, as it is based on an explicit (if somewhat arbitrary) likelihood 
with a natural interpretation. 

(ii) A n  augmented likelihood 

An alternative method for defining and formally deriving the Bj’s and their covariances is by the 
addition of a term to the log-likelihood (2) of the form: 

where M = C M j  is the total number of deaths and 

s-  1 

with N j  = C k n k j  and I an arbitrary constant. The term (6) can be interpreted as a Poisson 
likelihood for the total number of deaths M, with expectation E which is given by some 
underlying rate I multiplied by the number of individuals at risk in category j weighted by their 
risks expaj, and summed over all categories and risk sets. This is a likelihood familiar from 
analyses of cohort studies. The total log-likelihood, with the p j ’ s  replaced by aj’s, is then: 

s- I 

logL = c Miaj - 1 log C [n,,expa,] 
j = O  k =  1 {:r: 

We provide below a more rational basis for this likelihood. For the moment, we simply note that 
(8) can be maximized with respect to all s parameters a. , . . . , a,- Moreover, having obtained 
estimates of the aj’s the corresponding log-relative risk estimates flj and their variances and 
covariances are precisely the same as those obtained from the original Cox likelihood. This is 
because the first derivatives of (8) are given by: 

aiogL njkexpaj MNjexp a j  
= M j -  C - INjexpaj  + 

daj k = l  1,nIkexpa ,  1, Nl exp a1 

and the maximum likelihood solution to (9) must satisfy: 

; lx jNjexpuj  = M. 

(9) 

At the maximum likelihood estimate, therefore, the final two terms of (9) cancel out and the 
equations reduce (after substituting pj  = a j  - ao) to the first derivatives of the Cox partial 
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likelihood (2). The second derivatives of (8) are given by: 

njkexpuj K (njkexpaj)’ d2 log L = - f  
atl; k = 1 1, nlk exp uI + k g l  (1, nlk expul)2 

M N j  expuj M(Njexpuj)’ + Nj expuj - + 
ClNlexP~l  (C,N,eXPal)’ 

at the maximum likelihood solution, and 

Under the orthogonality given by (3), the off diagonal terms (12) equal zero, and the estimates 8, 
are independent. More generally, provided that the proportion of individuals in each category is 
approximately the same in all risk sets, the off diagonal terms will be small compared with the 
diagonal terms (1 l), and the tij’s should therefore be only weakly correlated. 

We note that the actual values of the uj (as opposed to their differences) are still arbitrary since 
by suitable choice of I in (7) the uj can take any value. It will often in fact be convenient to arrange 
for 8, to be zero so that the ‘zero’ group can be regarded as a baseline group, as in the standard 
analysis. Note, however, that 8, does have a well defined standard error in this formulation. 

The augmented likelihood (8) can be interpreted in the following way. Instead of the Cox 
partial likelihood, one can consider a full Poisson likelihood with one parameter Yk for each risk 
set: 

Here 6, is the time period associated with risk set k. At first sight this does not appear very 
satisfactory, because the number of parameters may increase without limit with the number of 
deaths. However, Breslow6 demonstrated that if this likelihood is maximized with respect to the 
y;s, one obtains (in the absence of ties) precisely the Cox likelihood (2), and therefore the two 
likelihoods lead to identical iaferences. Here we wish to maximize (13) with respect to just K - 1 
parameters, so that s can be retained, one for each group. The idea, loosely, is to maximize (1 3) 
with respect to the relative values of the parameters Yk, in other words the shape of I , ( t ) ,  the 
baseline hazard function, but not the overall level of risk. Thus instead of the usual estimates for 
the Yk’s: 

we have 

where q is an arbitrary constant. When these terms are substituted in (13) they give the Cox 
likelihood plus the augmented term: 

K logq - K q.  
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There are various ways in which the y;s could be constrained, but one simple option is to choose 
such that 

r 1 

that is, such that the personyears weighted sum of the 7;s is 1. 
Then 

and this gives the augmented log-likelihood (8). 

Case-control analysis 

Consider now the related problem of matched case-control analyses using logistic regression.’ In 
a design where a single case is matched to a number of controls, the likelihood for logistic 
regression is identical to the partial likelihood (2), where each risk set now consists of the case and 
all its matched controls.’ If the number of controls per case is large, the same augmentation to the 
likelihood may be made to provide approximately orthogonal estimates, although it can no 
longer be interpreted as a Poisson likelihood. Where the number of controls per case is small, it is 
of course not possible for each group to be equally represented in each risk set. Nevertheless, 
approximate independence should often still result. Consider the extreme case of a matched pair 
design, with mij pairs where the case is in group i and the control is in groupj. The first term in the 
expression for an off diagonal element of the information matrix (12) is then 

(mij + mji) (expaiexpaj) 
(expai + expaj)’ ’ 

Suppose that, in fact, matching was unnecessary, and let q j  be the expected proportion of controls 
in exposure category j .  Then the expectation of mij is 

so that for large numbers of case-control pairs the first term of (12) can be approximated by 

or approximately 
M(Ni expai)(Njexpaj) 

2 (1, Ni expa,)’ 
provided the aj’s are not too large. This is exactly half the second term in (12). We propose, 
therefore, that to achieve good independence between the aj’s in a 1-1 matched case-control 
analysis, the augmented term in the likelihood (6) and thus in the information matrix (1 1) and (12) 
should be multiplied by 1/2. Note that this is a perfectly legitimate manoeuvre, since the resulting 
parameter estimates d j  and their covariances still give rise to the original [is upon subtracting d o .  
In general the augmented terms should be multiplied by CJ(1 + C,) where c k  is the number of 
controls in risk set k. This adjustment is usually of no consequence in survival analysis where risk 
sets are large, but can markedly improve independence of the dj’s for matched pairs. 
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For a general stratified design with multiple cases and controls in any given stratum, the exact 
partial log-likelihoods are more complicated.2 However, the same adjustment terms should 
apply, but with ck/(ck + 1) replaced by ck/(ck + Dk), where Dk is the number of cases in risk 
set k. 

Additional covariates 

If t additional covariates with parameters 6, ( i  = 1, . . . , t )  are included in the model, the 
'expectation' E which augments the Poisson likelihood (6) is replaced by: 

where the sum is over all individuals, rl is the number of risk sets containing individual I, j ( I )  is 
the category to which he belongs, and ZiI is his ith covariate measurement. This leads to straight- 
forward corrections to the augmented terms for the information matrix in (11) and (12). It is 
necessary in this situation to arrange that the covariates have weighted mean zero over all risk 
sets and individuals, that is 

ClrlZilexp(CjZj16j) = 0 ( i  = 1,. . . , r) 

by subtracting from the covariates the weighted mean: 

This ensures that the terms in the information matrix relating only to the 6;s are not affected by 
augmenting the likelihood. 

EXAMPLES 

Small cell lung cancer 

Vincent et d8 describe an analysis of prognostic factors in a series of 333 patients with small cell 
lung cancer. A number of important prognostic factors were identified including performance 
status defined by the WHO five point scale. An analysis of performance status is shown in Table I. 
(The group of 281 patients analysed here differs slightly from that presented by Vincent et a/.'). In 
a standard analysis assuming proportional hazards there is a highly significant trend in risk with 
increasing performance status. However, the confidence limits for the relative risk, compared with 
the baseline category (zero performance status) overlap considerably. This unsatisfactory phe- 
nomenon is a consequence of the baseline category being a small group, and inflating the width of 
all the confidence intervals. The right hand column of Table I gives the standard errors and 
confidence intervals using the suggested heuristic approach. The covariance matrix shows that 
these estimates are nearly independent; this is true despite the marked effect of performance status 
on survival and the high overall death rate leading to substantial changes in the proportions in 
the different groups over time. The confidence limits for this analysis indicate that patients with 
performance status 2 and 3 clearly fare worse than those with performance status 1, which was 
not obvious from the standard analysis. The covariance matrix obtained using the augmented 
likelihood gives somewhat higher correlations than the heuristic approach for most of the 
estimates, although the standard errors and confidence limits are very similar. 
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Table I. Relative risk of death for small cell lung cancer patients by performance status (based on Vincent e t  a1.') 

Standard Suggested 
presentation presentation* 

Performance Number of Number of Relative 95% confidence Standard 95% confidence 
status patients deaths risk limits error limits 

0 36 in 1 .00 0.24 (063- 1 60) 
1 144 117 1.93 (1'17-3.17) 0.10 (1 '59-2'34) 
2 63 54 4.15 (24-7.13) 0.14 (3.17-5.43) 
3 31 29 5.3 1 (2'91-9.67) 0.19 (3.67-7.67) 
4 7 6 5.06 ( 2 . ~ 1 2 4 3 )  0.4 1 (2.27-1 1.29) 

* Using the heuristic approach. Confidence limits obtained by the augmented likelihood approach are very similar. 

Covariance matrix for standard analysis: 

1 2 

0.0643 
0.0558 0.0763 
0.0560 0 . 0 5 ~  
o . o m  0.057n 

I 
2 
3 
4 

Covariance matrix using heuristic approach: 

0 1 

0.0571 
0.00 I2 0.0096 

- 0.0003 
- 0.0005 

covariance matrix using augmented likelihood approach: 

0 1 

00022 0.0105 
- 0.0003 - O ~ o o 0 4  
- 0.0013 - 0~0013 
- O~Ooo1 - 0~0002 

0 . 0 5 ~  

3 

0.0940 
0.0586 

2 

o.oin7 
00005 
0~000 I 

2 

0.0176 
- 0.0014 
- 0.0008 

4 

0.2253 1 
3 

0.0353 
O.OOO6 

3 

0.033 I 
0.001 1 

4 

0.1676 

Oral contraceptives and breast cancer 

The U.K. National Case-Control Study Group' conducted a matched case-control study of oral 
contraceptive use and breast cancer risk in women aged under 36 years. 755 cases and 
individually matched population based controls were studied. Table I1 shows the effect of 
duration of oral contraceptive use on breast cancer risk, after allowing for five possible 
confounding variables in a conditional logistic regression analysis. There is a highly significant 
( p  < 0.001) trend in risk with increasing duration of use of oral contraceptives, but again the 95 
per cent confidence limits for the relative risks compared with the baseline category (never used) 
overlap considerably. The confidence limits give the impression that the three categories of pill 
use do not differ significantly; they all appear consistent with a relative risk of 1.3 compared with 
non-users, but this is an artefact of the small size of the baseline category. The right hand column 
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Table 11. Relative risk of breast cancer by duration of oral contraceptive use (from U.K. National Case Control Study 
Group') 

Standard Suggested 
presentation presentationt 

Duration cf Number of Number of Odds 95% confidence Standard 95% confidence 
use (months) cases controls ratio' limits error limits 

Never 67 80 1 .00 0.18 (0.7 1 - 1.4 1 )  
1 4 8  218 285 0.95 (0.64 1.4 1 ) 0.10 (0.79- 1 . 1  5) 
49-96 272 247 1.43 (097-2.12) 0.09 ( 1.20-1.7 1 )  
97+ 198 143 1.74 (1.15-2.62) 0.10 (1.39-2.1 8) 

Adjusted for age, age at menarche, nulliparity, age at first full-term pregnancy, breast feeding and family history of breast cancer. 
t Using the heuristic approach. Confidence limits obtained by the augmented likelihood approach are very similar. 

Covariance matrix for standard analysis: 

1-48 49-96 

0.0408 1 
49-96 0.03 184 0.04003 
97 + 0.03087 0.031 19 

Covariance matrix using heuristic approach: 

Never 1-48 

Never 0.03 13 
00094 

49-96 0.0003 
97 -t 00002 

Covariance matrix using augmented likelihood approach: 

Never 1 4 8  

Never 0.0321 

49-96 O.oo00 0.0006 
1 4 8  [ O~Ooo9 0.0 105 

97 -t -0~oo04 -0.0007 

of Tab1 I1 shows the confidence limits given by th 

97 + 

0,04390 1 
49-96 9 7 t  

1 
1 0.008 3 

- O ~ O o o 1  0.0131 

49-96 97 -t 

1 
0.0079 

- 0.001 3 0.0110 

suggested method. The risk associated with 
1 4 8  months can be seen to be significantly less than that for 49-96 or 97 + months use. Note 
again the covariance matrix for the new analysis, indicating the near independence of the 
parameter estimates, in marked contrast to the standard analysis. The augmented likelihood 
method gives very similar confidence limits, but thc majority of the correlations are somewhat 
larger than those given by the heuristic approach. 

CONCLUSIONS 

Our parameter estimates with their associated confidence intervals, which we suggest should be 
referred to as 'floating absolute risk' (FAR) estimates, are superficially similar to conventional 
relative risks. Indeed, the parameter estimates are identical, and the variance-covariance matrices 
can be regarded as transformations of one another. To avoid confusion, we recommend that F A R  
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confidence limits should be quoted in addition to conventional relative risk confidence intervals, 
as in Tables I and 11. 

The above results have all been described assuming a log-linear relative risk function, but in 
principle similar methods should apply to general relative risk functions. lo  We have not formally 
examined the effect on the covariances of variation between risk sets or strata in the proportion of 
individuals in each category; but the correlations were small in the data sets we have analysed, 
even when the proportions varied markedly. This approximate independence of the estimates is 
an important property, since it enables standard errors and confidence limits to describe their 
uncertainty without the need for covariances which are, in practice, not given. 

For practical purposes the ‘heuristic’ approach seems clearly preferable to the augmented 
likelihood method of analysis. The results are virtually identical, but the heuristic method, by its 
definition, gives lower average covariances between estimates, and is algebraically trivial. 

A fundamental statistical principle, that a satisfactory summary of the data should include the 
sufficient statistics, underlies the inadequacy of the common practice of describing data on s 
categories by s - 1 relative risks and their standard errors, a total of 2s - 2 parameters. Subject 
to the usual asymptotic normal approximation, in cases where the analysis recommended here 
yields s exactly independent relative risk estimates, there are 2s - 1 sufficient statistics (s - 1 
relative risks, their standard errors and the standard error of the baseline group). In most 
situations, the recommended estimates are almost independent and these 2s - 1 statistics can 
perhaps be described as ‘virtually sufficient’. 
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